Preferential binding of a stable G3BP ribonucleoprotein complex to intron-retaining transcripts in mouse brain and modulation of their expression in the cerebellum.
نویسندگان
چکیده
Neuronal granules play an important role in the localization and transport of translationally silenced messenger ribonucleoproteins in neurons. Among the factors associated with these granules, the RNA-binding protein G3BP1 (stress-granules assembly factor) is involved in neuronal plasticity and is induced in Alzheimer's disease. We immunopurified a stable complex containing G3BP1 from mouse brain and performed high-throughput sequencing and cross-linking immunoprecipitation to identify the associated RNAs. The G3BP-complex contained the deubiquitinating protease USP10, CtBP1 and the RNA-binding proteins Caprin-1, G3BP2a and splicing factor proline and glutamine rich, or PSF. The G3BP-complex binds preferentially to transcripts that retain introns, and to non-coding sequences like 3'-untranslated region and long non-coding RNAs. Specific transcripts with retained introns appear to be enriched in the cerebellum compared to the rest of the brain and G3BP1 depletion decreased this intron retention in the cerebellum of G3BP1 knockout mice. Among the enriched transcripts, we found an overrepresentation of genes involved in synaptic transmission, especially glutamate-related neuronal transmission. Notably, G3BP1 seems to repress the expression of the mature Grm5 (metabotropic glutamate receptor 5) transcript, by promoting the retention of an intron in the immature transcript in the cerebellum. Our results suggest that G3BP is involved in a new functional mechanism to regulate non-coding RNAs including intron-retaining transcripts, and thus have broad implications for neuronal gene regulation, where intron retention is widespread.
منابع مشابه
Differential Effects of Resveratrol on the Expression of Brain-Derived Neurotrophic Factor Transcripts and Protein in the Hippocampus of Rat Brain
Background: The induction of brain-derived neurotrophic factor (BDNF) expression in the hippocampus has shown to play a role in the beneficial effects of resveratrol (RSV) on the learning and memory. The BDNF gene has a complicated structure with eight 5’ noncoding exons (I-IXa), each of which can splice to a common coding exon (IX) to form a functional transcript. Estrogens increase levels of ...
متن کاملInvestigation on the Levels of IGF-I Receptor and IGF-I Binding Protein I in the Brain of Insulin Resistant Rats
Abstract Introduction: There is limited knowledge available on the metabolism of glucose in the brain, an insulin insensitive organ. Insulin receptors hybridize with insulin like growth factor receptor (IGF-I) to transduce the signals in different areas of the brain. In this article we aimed at investigating whether the expression of IGF-I receptor and IGF-I binding proteins (IGFBP1) is change...
متن کاملRasputin, more promiscuous than ever: a review of G3BP.
In this review, we highlight what G3BP's domain structure initially suggested; that G3BPs are "scaffolding" proteins linking signal transduction to RNA metabolism. Whilst it is most attractive to hypothesise about G3BP's role in signalling to mRNA metabolism, it is not known whether all G3BP functions impinge on their RNA-binding activities, so any theories are naturally subject to this qualifi...
متن کاملThe Effect of Endurance Exercise Training on the Expression of Brain-Derived Neurotrophic Factor (BDNF) and Nerve Growth Factor (NGF) Genes of the Cerebellum in Diabetic Rat
Objective: Few studies have been conducted on variations of the central nervous system of diabetic patients and much fewer investigations done on the cerebellum of diabetes patients. The current research aims to investigate the effect of endurance training on neurotrophic factors affecting the cerebellum in the diabetic rat. Materials and Methods: This study is experimental.Twenty Wistar rat w...
متن کاملThe gene expression level of p53 and p21 in mouse brain exposed to radiofrequency field
Background: Widespread and growing sources of electromagnetic radiation raised concerns attributed to the potential adverse health risk of radiofrequency fields. Given the functional importance of the hippocampus, this study aimed to investigate the effects of electromagnetic waves radiated by mobile jammer on hippocampal expression of p21 and p53 genes as regulators of cellular apoptosis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurochemistry
دوره 139 3 شماره
صفحات -
تاریخ انتشار 2016